
0 1 1 Scheduling Tasks With Exponential Service Times with
In-Tree Precedewe Contraints

John 3 m n o

Research lust i l u te for .\dvanced Coiriautci SC' 'erice
NASA Amcs Ilesearch Center

ItlACS T R 84.3

(N A S A - C R - 1 8 7 2 8 4) ON SCHEUULING TASKS Y I T H
EXPONENTIAL S E R V I C E T I M E S WITH IN-TREE
PRECEDENCE C O N S T R A I N T S (Research I n s t - fo r
Advanced Computer Science) 9 p

N90-11364

Uncl as
00/61 0 2 9 5 3 7 8

Rl ACS
Research Institute for Advanced Computer Science

On Scheduling Tasks with Exponential Service Times with
In-Tree Precedence Constraints

John Bruno
Research Institute in Advanced Computer Science

NASA Ames Rcseach Center
and

The Department of Computer Science
University of California

Santa Barbara

ABSTRACT

In this paper we extend the work of Chandy and Reynolds in which
they considered the problem of scheduling tasks on two identical processors.
The processing times of the tasks are independent, identically distributed
exponential random variables The tasks are subject to in-tree precedence con-
straints. Chandy and Reynolds have shown that the expected value of the
makespadlatest finishing-time) is minimkd if and only if the scheduling pol-
icy is Highest-Level-First(HLF). We extend their result by showing that a
policy maximizes the probability that all tasks finish by some time t 30 if
and only if the policy is HLF. Additionally, we show that a policy maximizes
the probability that the sum of the finishing times of all the tasks is less than
some value s > 0 if and only if the policy is HLF.

1. Introduction

Ln this paper we extend the work of Chandy and ReynoldCR! in which they considered the
problem of scheduling tasks on two identical processors. The processing times of the tasks are
mdependent, identically drstnbuted exponential ranaom variabies. Tue -miis aie suLv@ci G k-
tree precedence constraints. Chandy and Reynolds have shown that the expected value of the
makespan(1atest finishing-time) is minimiled if and only if the scheduling policy is Highest-
Level-First(HLF1. We extend their result by showing that other criteria are also optimized by
the HLF policy. In particular we show that a policy maximizes the probability that all tasks
finish by some time t > 0 if and only if the policy is HLF. Additionally, we show that a pol-
icy maximizes the probability that the sum of the finishing times of all the tasks is less than
some value s > 0 if and only if the policy is HLF.
Ln the next section we introduce definitions and notation used throughout the paper. Follow-
ing this we give a precise formulation of the criteria for optimality and subsequently we state
the main results. All proofs appear in the Appendix.

2. Definitions and Notation

A scheduling problem consists of a set of tasks, precedence constraints among the tasks, and
service-time requirement, 7 , for each task. In this paper we shall consider the service-time
requirements of the tasks to be independent, identically distributed random variables with
distribution function P .(t) = l-e . Below we introduce some graph-theoretic definitions
which are useful for describing the precedence constraints among the tasks.

June 4,1984

- 2 -

A directed gr@ G , k give9 by
1.

2.
3.

V , a finite set of tasks(vertices),
E , a finite set of edges, and
A relation o f incidence which associates with each edge e in E an ordered pair of tasks
(K ,v). The tasks u and v called the endpoints of e and u (v) is called the immediate
predecessor(successor) of v (u 1.

The notation G (V ,E denotes the directed p p h G with task set V and edge set E . V (G
and E (V) denote the task set and edge set of the directed graph G , respectively.
Let G (V J ?) be a directed graph. A task is called inirid(final) if it has no immediate
predecessodsu-rs). Let I (G denote the set of initial tasks of G . A direcfed path of
length k is a sequence of k 3 1 tasks v l,v . . , v, where vi is an immediate predecessor of
v, if there is a
directed path beginning at u and ending at v in G . We say that G is acyclic if there is no
directed path in G with repeated tasks. If G is acyclic then we define X(v , the level of the
task v , to be the length of the longest path from v to a final task. The graph formed from G
by removing the task v belonging to G is denoted by G l v and consists of the tasks in
V - {v 1, the edges e EE such that both endpoints of e are in V -{v }, and the relation of
incidence which is the restriction of the relation of incidence in G to the edges and tasks of
G l v . G is called an in-tree if it is acyclic and each task has at most one immediate successor.
An instance of a scheduling problem is given by an in-tree G . As was mentioned above, each
task of G has an associated service requirement 7. The service requirements of all tasks are
independent, identically distributed random variables with distribution function
F ,(t = l-e -clz where p > 0. We assume that there are 2 identical processors and the pro-
cessing constraint is that a processor may not be assigned to a task until all of its predecessors
have completed their processing.
A p o k y , n, is a mapping from in-trees into subsets of tasks satisfying:
1. d G is a subset of I (G), and
2.
A policy is called highest-level-first (HLF) if v E ~ G then X(v 12 X(u for all
u €1 (G b d G 1.
Given a scheduling problem G and a policy n, a schedule is determined by assigning the pro-
cessors to the tasks determined by the policy n at decision points. The decision poinfs consist
of time zero and subsequent task completion times. Ar rime z r o the p i m a i s Ziie a i g ~ d to
the tasks in d G 1. The next decision point occurs at the first completion of a task in dG 1. If
d G contains two tasks the distribution function of the time to the first completion is
F .(2t = l-e -2w and if d G) contains one task the distribution function of the completion
time is F .(t). Suppose task a E ~ G) is the first to finish. We now assign the processors to
the tasks in d G / a and the time to the next decision point is the time to the first completion
of a task in d G l a). This process continues until all the tasks in G have been processed.
Notice that preemptions are allowed.

for i =l-k -1. Task u (v) is called a predecessor(successor) of task v (u

if I I (G) I t < 2 then dG = I (G) otherwise I d G 1 I = 2.

3. Optimization Criteria

Let G be a scheduling problem, n a policy, and t 2 0. We define MZ(t to be the probabWy
that all tasks in G complete their processing by time t given that scheduling begins at time
zero and the policy v is used throughour. We can write M z (t as follows:
a) If G has no tasks (i-e. V and E are both empty) then

M?(t) = 1.

' I s I denotes the numba of elements in the set S .

June 4,1984

- 3 -

b) E G h?s txzctlg nne initial task (dG) = {Q)) then

M f (t = pjo'(l-F T(x >)Mgo (f --x)dx .
C) If G has two or more initial tasks (dG = {Q ,b 1) then

M c (t = 2pjoZ(1-F T(2-x)xzMt';a 1 (t --x + s M z / b 1 (t --x))dx *

Case a) is obvious. Case b) expresses M c (t in terms of the probability that Q finishes at time
x and the probability of the remaining tasks finishing within time t --x . In a similar manner,
case c) expresses M;(r in terms of the probability that the first finish occurs at time x and
the probability of the remaining tasks finishing within time t -x . There arc two equally
likely cases either task Q or task b finishes first.

We shall consider a second optimhtion criterion. Let G be a scheduling problem, w a policy,
and s 2 0. We define W& to be the probability r h t the sum of the finishing times of (111
tasks in G is no grearer thun s given that scheduling begins ar time zero curd the policy w is
used throughow. We can write WZ(s as follows
a) If G has no tasks (i&. V and E are both empty.) then

W f (s 1 = 1 .
b) If G has exactly one initial task (d G = { Q)> then

r l n

WZ(S = p jo (1-F T(x))w&o (s -nx)dx 9

where n = I V (G)I.
If G has two or more initial tasks (dG > = {Q ,b)) then

s l n 1 1
c>

W z (s = 21.1 Jo (1-F .(2x >xyW&,, (s -nx + yw&b (s --nx))dx ,

where n = I V (G) I .
Case a) is obvious. Case b) expresses W&) in terms of the probability that a finishes at time
x and the probability that the sum of the finishing times of the remaining tasks is not greater
than s -nx . The idea is that by time x the finishing times of all n tasks are at least x and
so we can reduce the original problem to the subproblem Gla with s reduced by nx . Case C>
1s slmiiar to case b) e x i q t that there zrp, ty.rc tqmlly likely subcases to consider. . .

4. Optimality Equations

For i = 1,2 we define the operator Li which maps the set of continuous functions on [O , d
into itself. Let g be a continuous function of t on [o,oo).
Let

t
[Li g Xt 1 = i p Jo (I-F .(in >>g (t -n)dx

Let G be an instance of a scheduling problem. Below we give a set of equations, called the
optimdity equations, which determine MG , the optimal value for the makespan criterion.
These equations are policy-independent and thus express the best we can hope to achieve
under any circumstances. The optimality equations for MG are:
a) I f G isemptythen

MG = 1 .

b) If G has exactly one initial task, a, then

June 4.1984

- 4 -

- - M, = 1. ;-&?,;e

c> If G has two or more initial tasks then

A policy T is called a M e s p a n optimal policy if M z (t) = MG (t) for all G and t 3 0.

We next present the optimality equations for the sum-of-finishing-times criterion. For
i = 12 and n 2 0 we de5ne the operator K: which maps the set of continuous functions on
[o,oo> into itself.
Let

and

Below we give the optimaUty equatiotrJ which determine W G , the optimal value for the
sum-of-finishing-times criterion. As before, these equations are policy-independent and thus
express the best we can hope to achieve. The optimality equations for WG are:
a> I f G isempty then

wc; = l .

b) If G has exactly one initial task, a, and I V (G I = R +1 then
W G = K1Wcla .

c> I f G hastwoormoreinitialtasksand IV(G)I = n + l r h e n .

A policy 7~ is called a mm-of-finishing-times optimclr policy if W,"(s 1 = WG (s
and 5 >O.

for all G

5. MainResults

In this section we state the main results of this paper.

Theorem 1. A policy w is makespan optimal if and only if it is HLF.
Proof: See Appendix.
Theorem 2 A policy 7r is sum-of-finishing-time optimal if an only if it is HLF.
Proof: The proof of Theorem 2 follows the same pattern as the proof on Theorem 1 and is not
given. See the Appendix for the proof of Theorem 1.

The pattern of the proof of Theorem 1 suggests that HLF is optimal with respect to a wide
variety of criteria. Specifically, the proof uses the fact that the operator Li is monotone. The
inductive proof of Theorem A given in the Appendix will work for any monotone operator as
long as certain special cases can be proved. The special cases consist of those where either H
or G have exactly one initial task. In these cases we have used a sample-path analysis which
works because of the simple structure of an in-tree with one initial task.

June 4,1984

- 5 -

Th,e p d i d e s we have defined are rather simple and do not depend on scheduling history.
Becaue of &e memoryless property of the exponential distribution, nothing is gained by going
to a more complex class of policies.
It is known that HLF is not optimal for more than two processodCR]. An out-tree is an acy-
clic directed graph in which each task has at most one immediate predecessor. For two or more
machines, independent. identically distributed exponential service times and out-tree pre-
cedence constraints there are no known results. This is rather surprising, but true. It is
tempting to try an consider these problems from a complexity point-of-view. The reader is
referred to a recent paper by Christos Papadimitriou, which was inspired by an attempt to
classify the complexity of these scheduling probledPa]. In contrast. the situatian for the
deterministic version of these problems reasonably well understoc~$Br].

6. References

[Br] Bruno, J. "Deterministic and Stochastic Scheduling Problems with Treelike Precedence
Constraints." in D e t d n i s t i c and Stmhastic Scheduling eds. Dempster. MAAH, et. al,
D. Reidel Publishing Co, 1982, pp 367-374.

[CR] Chandy, ICM, and Reynolds, P.F, "Scheduling Partially Ordered Tasks with Exponen-
tially Distributed Times," Department of Computer Sciences, University of Texas at Aus-
tin

[Pa] Papadimitriou, C. H, "Games Against Nature," 24th Symposium on the Foundations of
Cornper Science, Nov 1983, pp 446-450

Appendix

In this appendix we give the proofs of the main results of this paper. These proofs are close to
the ones given by Chandy and Reynolds[CR] for the case of expected makespan optimization.
To begin with we define three relations over in-trees which were originally introduced in
[CRI.

Let G (V ,E be an in-tree. Let Nj be equal to the number of tasks v EV such that X(v = i .
Using Nj we define S (G ,i as

S (G $) = NE .
E ai

Let G and Ii be two in-trees We define three relations, B , - , and Q , on pairs of in-
trees as follows:
1. If S (G JY)<S (H $) for all i >, 1 then we write G S H .
2. If S (G JY)=S (H $ for all i 3 1 then we write G - H .
3. I f G B H and thereexistsani such that S (G , i) < H (G $) then we write G 4 H .
The above definitions compare in-trees in terms of the total number of nodes a t and above each
level. I t turns out that the "flatter" the in-tree the better it is for maximizing M and W .

Lemma 1 Let G be an in-tree and a ,b 6 1 (G 1. If X(a)B X(b then G/a Q G/b . If
h(a >> X(b then G/a Q G/b . If X(a)=A@ then G/a - G/b .
Proof: &e [CR].

Lemma 2 let G and H be an in-trees, a 1~ $1 (G 1, and b 1,b $1 (a 1.
If

a and A(a A(a 2)& X(a for all a e l (G)-(a 2) and

June 4,1984

- 6 -

b l#b and X(b 1)2 A(b 33 X(b for a l l b €1 (H)-{b lb 21
then

G 3 €2 imp lie^ G/u 1% H / b 1 and G/u 2s Ii/b a
G Q H implies G/u ,Q H/b or G/a 2 4 H/b or both,
G - H implies G/Q - Hlb I and G/a 2 - H/b 2 .

Proof: See [a].

The next theorem relates the values of the solution to the optimality equations for the mak-
espan to the relations on in-trees defined above.
Theorem A Let G and H be in-trees. Then
a) G - H implies MG =Ma ,
b) G s H impliesM, > M H ,

Proof: The proof is by induction on I V (H I, the number of tasks in a. Notice that in all
three cases a, b, and c that IV (GI I < IV (H I I.

The theorem is trivially true in this: case.
Induction Step: Assume that I V (H I >O and that the theorem is true for in-trees with
fewer tasks than H .
Part a) We must show that G - H implies MG =Mu.
We break this part of the proof down into two cases. one in which H has exactly one initial
task and one in which H has two or more initial tasks.
Case 1: H has exactly one initial task, say a .
By hypothesis and the properties of - and in-trees, G is isomorphic to H . Therefore

Case 2: H has two or more initial tasks.
By the d e h t i o n of - , G also has two or more initial tasks. By the definition of MG we
have

C> G G H i m p l i e s M G > M n .

Basis: I v (€2 1 I =o.

MG =MH.

maX (L 2 M G I a 4- L 2 M G I b -

We have from Lemma 1 that if A(a)a A(b) then G/a 4 G l b . By induction we have
MGJ, b M G I b (We have invoked part b of the theorem with G/Q playing the role of G and
Glb playing the role of H .). Since is L is monotone, (L MGla + L 2 MGIb is maximized
by choosing Q and b with the highest possible levels. Therefore,

1
MG = -

2 a *
a ,b r l (G I

(1) 1
MG = y (L 2 M G l a 1 + L 2 M G I a 2) *

where a 1p $1 (G), Q la and X(u 1)> A(u 3 h (u) for all a € I (G &{a 2) . It should be
clear that the choice of a and Q is not necessarily unique since any other initial tasks at the
same levels would serve.
Similarly, we have

(2) 1
MH = 7 (L2 M H ! b l L2 M H l b # *

where b l b f i I (H) , b2fb2and A(b1)2A(b2)h(b)forall b 6 1 (G b { b I b 2) .
By lemma 2 we have that G - H implies that G/a - H / b and G/a 2- H/b
the induction hypothesis that

It follows from

June 4,1984

- 7 -

MGla = M H l b

and

MGla = M H / b *

Combining these results with equatim (1) and (2) we get that MG = M H , the desired
result.

,

Pzrt b) We must show that G Q H implies MG B M H .
We break this part of the proof down into 4 cases depending on whether the in-trees have one
or more than one initial task.
Case 1: H and G both have at least two initial tasks.
It is easy to see that equations (1) and (2) hold in this case. By lemma 2 we have that G Q H
implies that G/a ,6 H / b and G/Q p H / b 2. It follows from the induction hypothesis that

MGla M H l b

and

Combining this with equations (1) and (2) and by using the monotonicity of the operator L 2 ,

we get MG 3 M H .
Case 2 H has one initial task and G has at least two initial tasks.
We use a samplepath analysis for this case. Clearly, I V (G) I < I V (H) I and H is a path.
Consider a policy for G which atsigns the two processors to u ,b €1 (G) at t = 0 and after
the first finish uses only one of the processors thereafter. Let Y denote the latest completion
time of the tasks in G under this policy. Also, let 7, denote the processing time of task u .
We can write the random variable Y as follows,

Y = 7, - d n (r a , T b) .
u r V (G)

Since H has one initial task, we will only have use for one processor. Let 2 be the latest
completion time of the tasks in H . We can write Z as follows,

z = 7 , .
Y r V (H)

Let c$ be a 1-1 mapping of the tasks of G onto a subset of the tasks of H . Using c$ we have,

z = 7 & ,) + *
u r V (G 1

where *>O. Combining expressionS for Y and 2 we get

Clearly Pr (2 6 t) = M H (t). The optimality equations for MG determine an optimal pol-
icy so clearly Pr {Y < t) < MG (t). Using (3) we get

M G (r 13 Pr {Y < t) > Pr { Z < t) = MH (t) .
Case 3: H has at least two initial tasks and G has one inital task.
There is only one policy for G . However €2 contains a path that is at least as long as G .
Therefore, form a sample-path point of view, H will always take at least as long as G .
CASE 4 61 and G both have one initial task.
%Y -

June 4,1984

- 8 -

,

Part c) We must show that G Q H implies MG > MH .
'l'he proof is similar to Part bj.
End of Proof

-

We now are in a position to prove Theorem 1 of section 5.
Proof of Theorem I: To show that a HLF policy n is makespan optimal we must show that
MG" = MG for all in-trees G . In addition, if we want to show that only the HLF policies
are makespan optimal. then we will also have to show that if T is not HLF then there exists
an in-tree G such that MG"< MG .
The proof is by induction on I V (G I for the first part, namely that if n is HLF then 7r is a
makespan optimal policy.
Basis : I V (G I =O. The policy T is clearly optimal.
Induction Step : I V (G
fewer tasks than G . If G has only one initial task then all policies are identical. Therefore
we can assume that G has at least two initial tasks. Suppose n(G) = { u ,v). Then we can
write

I > 0 and we assume that n is makespan optimal for all in-trees with '

1
(L 2MG7u + L f i G 7 v * MG" = -

2
By induction we get

(4) 1 MG"= - (L a G l u + a G I v) 2
From Theorem A we can write(& equation (111,

(5) 1
M G = 7 (L a G l o + L 2MGIb

where a #b and X(a)> X(b >> X(c for all c E I (G)-{a ,b).
Clearly the choice of a and b is HLF but not necessarily the same as u and v . However, if
A(u)2 X(v then X(Q >= X(u) and X(b)= h(v >. By lemma 1 we have Gla -Glu and
Glb -Glv . Therefore using Theorem A part a we have that Mclo = M G / ~ and
M G I , = M,,, . Consequently, MG = MGr.

To complete the proof let T be a nonHLF policy. Let G be the smallest in-tree such that
d G is not an HLF assignment. Therefore if d G) = { u ,v 1, then there exists a
c €1 (G j-iu ,v j such that either h(c I> Ab j or A<c j> A<v j. Equation (4) siiii holds since
G has been chosen to be as small as possible and equation (5) holds. Assume X(c >> X(u 1.
Then we can replace the term MGlu in equation (4) with the term making the right-
hand-side(rhs) of (4) strictly larger. This follows from lemma 1 (X(c >> X(u) implies
Glc C Glu and Theorem A, part c (G/c C Glu implies Mclc > M G I ~ 1. We continue replac-
ing terms on the rhs of (4) until it matches the rhs of (5). This process can be carried out
without ever decreasing the rhs of (4). From this we conclude that MG"< MG .
End of Proof

The proof of Theorem 2 follows the same pattern as the proof of Theorem 1 and consequently
will be omitted.

June 4,1984

